Mastering Ruby Memory Management: A Practical Guide to Profiling and Optimization
Memory usage is often the silent performance killer in Ruby applications. While we frequently focus on execution speed, memory consumption can cause slowdowns, unexpected crashes, and increased hosting costs. In this guide, I’ll walk you through practical techniques for tracking and optimizing memory usage in Ruby and Rails applications using the powerful memory_profiler
gem.
Why Memory Matters
Memory issues in Ruby apps typically manifest in several ways:
- Slow performance: Memory bloat forces the garbage collector to work overtime
- Random crashes: Out-of-memory errors
- Steadily increasing memory usage: Signs of memory leaks
- Excessive hosting costs: Needing larger instances to handle memory requirements
Let’s dive into how to identify and solve these issues.
Setting Up Memory Profiler
First, you’ll need to install the memory_profiler
gem:
1
2
3
4
5
# In your Gemfile
gem 'memory_profiler'
# Or install it globally
# gem install memory_profiler
Then, install the gems:
1
bundle install
Basic Memory Profiling
Let’s start with a simple example. Create a file named memory_test.rb
:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
require 'memory_profiler'
# Set up logging to a file (optional but recommended)
log_file = File.new('memory_profile.log', 'w')
$stdout = log_file
$stdout.sync = true
report = MemoryProfiler.report do
# The code you want to profile
array = Array.new(1_000_000) { |i| "string #{i}" }
end
# Print the report
report.pretty_print
Run it:
1
ruby memory_test.rb
Now look at memory_profile.log
. The most important lines are at the top:
1
2
Total allocated: 120,000,816 bytes (2,000,002 objects)
Total retained: 120,000,816 bytes (2,000,002 objects)
This tells you:
- How much memory was allocated during execution
- How much remained in use after execution (not garbage collected)
Profiling Rails Applications
For Rails applications, here’s how to profile a specific action or process:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# In a controller or job
def expensive_action
data = nil
report = MemoryProfiler.report do
# Code to profile
data = User.includes(:posts, :comments)
.where(active: true)
.map { |u| u.attributes.merge(post_count: u.posts.size) }
end
# Save the report to a file
File.open("#{Rails.root}/log/memory_profile_#{Time.now.to_i}.log", 'w') do |file|
report.pretty_print(to_file: file)
end
render json: data
end
Memory Optimization Techniques
Now that you can measure memory usage, let’s look at common memory optimization strategies with real examples.
1. Use Batching for Large Collections
Problem:
1
2
3
4
5
6
7
8
9
# Memory-intensive approach
report = MemoryProfiler.report do
users = User.all
processed_users = users.map do |user|
# Process each user
process_user_data(user)
end
end
report.pretty_print
Solution:
1
2
3
4
5
6
7
8
# Memory-optimized approach
report = MemoryProfiler.report do
processed_users = []
User.find_each(batch_size: 100) do |user|
processed_users << process_user_data(user)
end
end
report.pretty_print
Using find_each
with batching reduces memory usage by loading records in smaller chunks rather than all at once.
2. Optimize String Operations
Problem:
1
2
3
4
5
6
7
report = MemoryProfiler.report do
result = ""
1000.times do |i|
result += "Adding string #{i}. " # Creates a new string each time
end
end
report.pretty_print
Solution:
1
2
3
4
5
6
7
8
report = MemoryProfiler.report do
chunks = []
1000.times do |i|
chunks << "Adding string #{i}. "
end
result = chunks.join
end
report.pretty_print
The second approach allocates fewer intermediate string objects, reducing memory churn.
3. Avoid Unnecessary Object Creation
Problem:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
report = MemoryProfiler.report do
users = User.all.to_a
users.each do |user|
# Creating temporary hash for each user
user_data = {
id: user.id,
name: user.name,
email: user.email,
# Many more attributes
created_at: user.created_at
}
process_data(user_data)
end
end
report.pretty_print
Solution:
1
2
3
4
5
6
7
report = MemoryProfiler.report do
User.select(:id, :name, :email, :created_at).find_each do |user|
# Use the ActiveRecord object directly
process_data(user)
end
end
report.pretty_print
This approach reduces memory by:
- Selecting only needed columns
- Avoiding unnecessary hash creation
- Processing in batches
4. Identify Memory-Heavy Gems
The memory profiler report includes a breakdown of memory allocation by gem:
1
2
3
4
5
allocated memory by gem
-----------------------------------
42462489 activesupport-7.0.4
24595828 activerecord-7.0.4
8953418 json-2.6.2
If a gem is using excessive memory, consider:
- Updating to a newer version
- Finding a more memory-efficient alternative
- Implementing a lightweight solution yourself
5. Monitor JSON Parsing and Generation
Problem:
1
2
3
4
5
6
7
8
report = MemoryProfiler.report do
large_data = File.read('large_data.json')
parsed_data = JSON.parse(large_data)
# Work with the data
processed = process_json_data(parsed_data)
JSON.generate(processed)
end
report.pretty_print
Solution:
1
2
3
4
5
6
7
8
9
report = MemoryProfiler.report do
# Stream parsing for large JSON files
result = []
Oj::Parser.new(:strict).parse_file('large_data.json') do |parsed|
# Process each object as it's parsed
result << transform_json_object(parsed)
end
end
report.pretty_print
Using streaming parsers like Oj (optimized JSON) for large files dramatically reduces memory usage.
Real-World Case Study: Rails Model Loading
Let’s examine a common memory issue in Rails - loading models with many associations:
The Problem
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Controller action
def dashboard
report = MemoryProfiler.report do
@users = User.all.includes(:posts, :comments, :profile)
@data = @users.map do |user|
{
user: user.attributes,
posts: user.posts.map(&:attributes),
comments: user.comments.map(&:attributes),
profile: user.profile&.attributes
}
end
end
File.open("#{Rails.root}/log/dashboard_memory.log", 'w') do |file|
report.pretty_print(to_file: file)
end
render json: @data
end
Memory profile results:
1
2
Total allocated: 254,328,816 bytes (3,200,502 objects)
Total retained: 125,624,816 bytes (1,600,252 objects)
The Solution
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def dashboard
report = MemoryProfiler.report do
# 1. Select only needed columns
# 2. Process in batches
# 3. Use pluck for simple data extraction
@data = []
User.select(:id, :name, :email, :created_at)
.find_in_batches(batch_size: 100) do |user_batch|
user_ids = user_batch.map(&:id)
# Fetch related data efficiently
posts = Post.where(user_id: user_ids)
.select(:id, :title, :user_id)
.group_by(&:user_id)
comments = Comment.where(user_id: user_ids)
.select(:id, :content, :user_id)
.group_by(&:user_id)
profiles = Profile.where(user_id: user_ids)
.select(:id, :bio, :user_id)
.index_by(&:user_id)
# Build the response without creating unnecessary objects
user_batch.each do |user|
user_data = {
id: user.id,
name: user.name,
email: user.email,
posts: posts[user.id]&.map { |p| { id: p.id, title: p.title } } || [],
comments: comments[user.id]&.map { |c| { id: c.id, content: c.content } } || [],
profile: profiles[user.id] ? { bio: profiles[user.id].bio } : nil
}
@data << user_data
end
end
end
File.open("#{Rails.root}/log/dashboard_memory_optimized.log", 'w') do |file|
report.pretty_print(to_file: file)
end
render json: @data
end
Memory profile results after optimization:
1
2
Total allocated: 42,328,816 bytes (520,502 objects)
Total retained: 15,624,816 bytes (200,252 objects)
That’s an 83% reduction in memory allocation and 88% reduction in retained memory!
Advanced Techniques
1. Detect Memory Leaks
To detect memory leaks, run the same code multiple times and watch for increasing memory:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
5.times do |i|
puts "Iteration #{i+1}"
report = MemoryProfiler.report do
# Code that might leak
perform_operation
end
puts "Allocated: #{report.total_allocated_memsize} bytes"
puts "Retained: #{report.total_retained_memsize} bytes"
puts "---"
# Force garbage collection between runs
GC.start
end
If retained memory grows with each iteration, you likely have a leak.
2. Targeted Detail Analysis
For complex issues, examine object allocation details:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
report = MemoryProfiler.report do
# Code to profile
end
# Get the top 20 locations allocating memory
puts "Top allocation locations:"
report.pretty_print(to_file: nil, detailed_report: false, scale_bytes: true,
top: 20)
# Get detailed string allocations
string_locations = report.strings_allocated
string_locations.sort_by! { |l| -l[:count] }
string_locations[0..10].each do |location|
puts "#{location[:count]} strings (#{location[:memsize]} bytes) allocated at #{location[:location]}"
end
3. Memory-Conscious Design Patterns
Here are some memory-efficient design patterns for Ruby applications:
Value Objects Instead of Hashes
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Memory-heavy approach
users.map do |user|
{ id: user.id, name: user.name, stats: calculate_stats(user) }
end
# Memory-efficient approach
class UserPresenter
attr_reader :id, :name
def initialize(user)
@user = user
@id = user.id
@name = user.name
end
def stats
@stats ||= calculate_stats(@user)
end
private
def calculate_stats(user)
# Calculation logic
end
end
users.map { |user| UserPresenter.new(user) }
Lazy Loading
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Report
def initialize(user_id)
@user_id = user_id
end
def summary
@summary ||= generate_summary
end
def details
@details ||= generate_details
end
private
def user
@user ||= User.find(@user_id)
end
def generate_summary
# Only calculated when needed
{ name: user.name, post_count: user.posts.count }
end
def generate_details
# Only calculated when needed
user.posts.map { |post| { title: post.title, likes: post.likes } }
end
end
Memory Profiling in Production
For monitoring memory in production:
- Use application monitoring tools: New Relic, Scout APM, Skylight
- Set up custom memory logging:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# In an initializer
module MemoryLogger
def self.log(label)
memory_before = `ps -o rss= -p #{Process.pid}`.to_i / 1024
yield if block_given?
memory_after = `ps -o rss= -p #{Process.pid}`.to_i / 1024
Rails.logger.info "[MEMORY] #{label}: #{memory_before}MB -> #{memory_after}MB (Δ#{memory_after - memory_before}MB)"
# Force garbage collection and measure again to see retained memory
GC.start
memory_after_gc = `ps -o rss= -p #{Process.pid}`.to_i / 1024
Rails.logger.info "[MEMORY] #{label} (after GC): #{memory_after_gc}MB (Δ#{memory_after_gc - memory_before}MB)"
end
end
# Usage in controller
def expensive_action
MemoryLogger.log("Processing users") do
@users = User.process_all
end
end
Conclusion
Memory management in Ruby requires awareness and proactive optimization. The memory_profiler
gem gives you powerful tools to identify memory issues and measure the impact of your optimizations.
Key takeaways:
- Measure before optimizing: Use memory_profiler to identify actual problem areas
- Process in batches: Break large operations into manageable chunks
- Select only what you need: Fetch only required columns from the database
- Minimize object creation: Reuse objects where possible
- Optimize string operations: String concatenation can be memory-intensive
- Watch for memory leaks: Monitor memory usage over time
By applying these techniques, you can build Ruby applications that are not only fast but also memory-efficient, resulting in more stable applications and lower hosting costs.
Resources
- memory_profiler GitHub repository
- Ruby Garbage Collection Deep Dive
- Ruby Performance Optimization by Alexander Dymo
- Derailed Benchmarks - A Rails memory benchmarking tool