Post

Mastering Rails Performance Benchmarking: A Developer's Guide

In the world of Rails application development, performance isn’t just a nice-to-have—it’s essential. As applications grow in complexity and user base, even small inefficiencies can compound into significant performance bottlenecks. This is where benchmarking becomes an invaluable tool in a developer’s arsenal.

Understanding Benchmarking in Ruby on Rails

Benchmarking is the systematic process of measuring and evaluating your code’s performance metrics. It allows you to identify bottlenecks, compare alternative implementations, and make data-driven optimization decisions rather than relying on intuition.

Why Benchmark Your Rails Application?

  • Identify performance bottlenecks: Find which parts of your application consume the most resources
  • Data-driven decision making: Choose between implementation approaches based on concrete metrics
  • Validate optimizations: Verify that your changes actually improve performance
  • Establish baselines: Create performance standards for your application

Ruby’s Built-in Benchmark Module

Ruby ships with a powerful Benchmark module in its standard library, which provides several methods for measuring code execution time. Let’s explore how to use it effectively in a Rails environment.

Setting Up Your Benchmarking Environment

First, let’s set up a proper benchmarking environment in your Rails application:

1
2
3
4
5
6
7
8
9
10
# In a Rails console or dedicated benchmark script
require 'benchmark'

# Optional: Direct output to a log file
log_file = File.open('log/benchmark_results.log', 'a')
log_file.sync = true
$stdout = log_file

# Use this to restore standard output when needed
# $stdout = STDOUT

Basic Benchmarking Techniques

Benchmark.measure: Timing a Single Operation

The simplest form of benchmarking is measuring how long a single block of code takes to execute:

1
2
3
4
5
6
7
result = Benchmark.measure do
  User.where(active: true).includes(:posts, :comments).each do |user|
    user.recalculate_statistics!
  end
end

puts result

This outputs something like:

1
  0.350000   0.050000   0.400000 (  0.412412)

The four numbers represent:

  1. User CPU time
  2. System CPU time
  3. Total CPU time (user + system)
  4. Real elapsed time (wall clock time)

Benchmark.bm: Comparing Multiple Operations

When you want to compare the performance of different approaches, Benchmark.bm is your friend:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Benchmark.bm(20) do |x|
  # Approach 1: Using ActiveRecord
  x.report("ActiveRecord:") do
    Post.where(published: true).count
  end
  
  # Approach 2: Using raw SQL
  x.report("Raw SQL:") do
    ActiveRecord::Base.connection.execute("SELECT COUNT(*) FROM posts WHERE published = true").first["count"]
  end
  
  # Approach 3: Using Rails counter cache
  x.report("Counter cache:") do
    Category.sum(:published_posts_count)
  end
end

The parameter 20 specifies the label width for better formatting of the output.

Benchmark.bmbm: Addressing Memory Warm-up Issues

Ruby’s garbage collector and other runtime considerations can sometimes skew your benchmark results. Benchmark.bmbm (or “burn-in benchmark”) runs the code twice—once as a rehearsal to warm up the environment, and once for the actual measurement:

1
2
3
4
5
6
7
8
9
10
11
12
Benchmark.bmbm(20) do |x|
  x.report("String concat:") do
    result = ""
    10000.times { result += "x" }
  end
  
  x.report("Array join:") do
    result = []
    10000.times { result << "x" }
    result.join
  end
end

Advanced Benchmarking Strategies

Benchmark.ips: Operations Per Second

While not part of the standard library, the benchmark-ips gem provides a more sophisticated approach by measuring iterations per second, which often gives more meaningful comparisons:

1
2
3
4
5
6
7
8
9
10
11
# Gemfile
gem 'benchmark-ips'

# In your benchmark code
require 'benchmark/ips'

Benchmark.ips do |x|
  x.report("Pluck:") { User.pluck(:email) }
  x.report("Map:") { User.all.map(&:email) }
  x.compare!
end

The compare! method will show how many times faster one approach is compared to others.

Creating a Custom Benchmarking Class

For more structured benchmarking in a Rails application, consider creating a custom benchmarking class:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class PerformanceBenchmark
  class << self
    def compare_query_methods(dataset_size: 1000)
      # Create test data
      User.transaction do
        dataset_size.times do |i|
          User.create!(
            name: "User #{i}",
            email: "user_#{i}@example.com",
            active: i.even?
          )
        end
        
        Benchmark.bmbm(25) do |x|
          x.report("where:") { User.where(active: true).to_a }
          x.report("find_by_sql:") { User.find_by_sql("SELECT * FROM users WHERE active = true") }
          x.report("in batches:") { [].tap { |results| User.where(active: true).in_batches(of: 100) { |batch| results.concat(batch.to_a) } } }
        end
        
        # Clean up test data
        raise ActiveRecord::Rollback
      end
    end
    
    def profile_action(times: 10, &block)
      results = []
      
      times.times do
        results << Benchmark.measure(&block).real
      end
      
      {
        min: results.min,
        max: results.max,
        avg: results.sum / results.size,
        median: results.sort[results.size / 2]
      }
    end
  end
end

Usage:

1
2
3
4
5
6
7
PerformanceBenchmark.compare_query_methods(dataset_size: 5000)

results = PerformanceBenchmark.profile_action(times: 20) do
  UsersController.new.index
end

puts "Average response time: #{results[:avg]}s"

Benchmarking in Production

For production environments, consider these approaches:

Request-level Benchmarking with ActiveSupport::Notifications

Rails provides a powerful instrumentation API through ActiveSupport::Notifications:

1
2
3
4
5
6
7
8
9
10
11
12
13
# In an initializer
ActiveSupport::Notifications.subscribe("process_action.action_controller") do |*args|
  event = ActiveSupport::Notifications::Event.new(*args)
  payload = event.payload
  
  if payload[:controller] == "UsersController" && payload[:action] == "index"
    Rails.logger.info(
      "UsersController#index performance: #{event.duration.round(2)}ms, " +
      "DB: #{payload[:db_runtime].round(2)}ms, " +
      "View: #{payload[:view_runtime].round(2)}ms"
    )
  end
end

Database Query Benchmarking

To specifically benchmark database operations:

1
2
3
4
5
6
7
8
9
10
11
12
13
class QueryBenchmark
  def self.analyze_query(sql)
    connection = ActiveRecord::Base.connection
    
    result = Benchmark.measure do
      connection.execute("EXPLAIN ANALYZE #{sql}")
    end
    
    puts "Query execution time: #{result.real.round(4)}s"
  end
end

QueryBenchmark.analyze_query("SELECT * FROM users WHERE created_at > '2023-01-01'")

Practical Real-world Examples

Example 1: Optimizing User Authentication

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
class AuthBenchmark
  def self.compare_authentication_methods(iterations = 1000)
    user = User.create!(email: "test@example.com", password: "password123")
    
    Benchmark.bm(25) do |x|
      x.report("Database lookup:") do
        iterations.times do
          User.find_by(email: "test@example.com")&.authenticate("password123")
        end
      end
      
      x.report("Cache + Database:") do
        iterations.times do
          cached_user = Rails.cache.fetch("user/test@example.com", expires_in: 5.minutes) do
            User.find_by(email: "test@example.com")
          end
          cached_user&.authenticate("password123")
        end
      end
      
      x.report("JWT token validation:") do
        token = JWT.encode({ user_id: user.id, exp: Time.now.to_i + 3600 }, Rails.application.credentials.secret_key_base)
        
        iterations.times do
          begin
            decoded = JWT.decode(token, Rails.application.credentials.secret_key_base)[0]
            User.find(decoded["user_id"]) if decoded["exp"] > Time.now.to_i
          rescue JWT::DecodeError
            nil
          end
        end
      end
    end
    
    user.destroy
  end
end

AuthBenchmark.compare_authentication_methods

Example 2: Data Serialization Performance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class SerializationBenchmark
  def self.compare_serialization_methods
    user = User.create!(
      name: "John Doe",
      email: "john@example.com",
      posts: Array.new(10) { |i| Post.create!(title: "Post #{i}", body: "Content #{i}") }
    )
    
    Benchmark.bm(20) do |x|
      x.report("ActiveModel::Serializer:") do
        100.times { ActiveModelSerializers::SerializableResource.new(user, include: [:posts]).to_json }
      end
      
      x.report("Jbuilder:") do
        100.times do
          Jbuilder.encode do |json|
            json.id user.id
            json.name user.name
            json.email user.email
            json.posts user.posts do |post|
              json.id post.id
              json.title post.title
            end
          end
        end
      end
      
      x.report("Custom to_json:") do
        100.times do
          {
            id: user.id,
            name: user.name,
            email: user.email,
            posts: user.posts.map { |p| { id: p.id, title: p.title } }
          }.to_json
        end
      end
    end
    
    user.destroy
  end
end

SerializationBenchmark.compare_serialization_methods

Best Practices for Accurate Benchmarking

  1. Run multiple iterations: Single measurements can be misleading due to variance
  2. Warm up the environment: Run the code at least once before measuring
  3. Eliminate external factors: Disable logging, background jobs, and other services
  4. Use realistic data volumes: Test with dataset sizes similar to production
  5. Benchmark in isolation: Test one component at a time for clear results
  6. Consider statistical significance: Use average of multiple runs to account for variance
  7. Test on production-like hardware: Development machines may perform differently

Interpreting Benchmark Results

When analyzing benchmark results:

  1. Look for orders of magnitude: Small differences (5-10%) might not be significant
  2. Consider the real-world impact: Optimize code that runs frequently or with large datasets
  3. Balance performance with readability: Sometimes slightly slower code is worth it for maintainability
  4. Profile before optimizing: Don’t guess at bottlenecks—measure first
  5. Consider memory usage alongside speed: Faster might not be better if it consumes far more memory

Conclusion

Benchmarking is an essential skill for Rails developers who want to build high-performance applications. By systematically measuring and comparing different approaches, you can make informed decisions that balance speed, memory usage, and code maintainability.

Remember that premature optimization is the root of all evil—benchmark first, then optimize where it matters most, and always validate your optimizations with data.

Resources

This post is licensed under CC BY 4.0 by the author.